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Amlication of Neural Networks for Discriminatirw Fire Detectors

Abstract

Research isbeing conducted todescribe the characteristics ofan improved fire

detector which promptly reacts tosmoke while discriminating between smoke and

‘odors from fire and non-fire sources. This study is investigating signature patterns

associated with fire and environmental sources via small- and large-scale tests

toward the development of an improved fire detector. On the tests, smoke and

odors are produced from a variety of conditions: flaming, pyrolyzing and heated

samples, and nuisance sources, such as aerosols, household products and cooked

food. Measurements include light obscuration, temperature, mass loss, CO, C02,

02 and oxidizable gas concentrations. The feasibility of an elementary expert

system to classify the source of the signatures from small-scale experiments was

demonstrated in the first phase. In the recently completed second phase, a similar

expert system correctly classified the source of the signatures in large-scale

experiments in 85% of the cases. Neural networks have been applied to both sets

of data from the small- and large-scale tests providing an even greater successful

classification rate.

Introduction

Fire detectors are intended to be sufficiently sensitive to detect fires promptly

without reacting to fialse sources. Contemporary smoke detectors have the ability

to respond quicldy,butgenerallycannot discriminate between smoke or odor

sources. The inability m discriminate between sources is a significant limitation.

Data from U.S. fire incidents during the 1980 Is indicates that 95% of all alarms

from smoke detectors were unnecessary [1].

One solution proposed for minimizing unnecessary alarms without sacrificing

prompt activation involves using intelligence along with current detector technology.

Some recently developed intdhjyvztdetectors provide a step in this direction where

a correction can be made for background noise, ambient conditions or changes in
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detector sensitivity .[2,3]. However, these contemporary detectors are still not

capable of adjusting even to commonly encountered tempora~ conditions from

tobacco smoke, cooking odors or aerosol sprays. The next step in the evolution of

a smart detector involves incorporation of intelligence, possibly with additional

senso& to provide the capability to discriminate between conditions from fire and

non-fire sources, without sacrificing response time [4].

An appreciable amount of effort is being expended by industry to develop odor

detection based on an analysis of the response from an array of sensors [5].

Applications for such a detector have been developed for the food industry, e.g.

process control for products such as coffee and beer, and quality control evaluations

of coffee beans and tobacco blends for cigarettes. Implementation of odor

detectors for these industrial applications indicates that an accurate assessment of

environmental odors is possible as a result of recent developments in sensor

technology and analysis techniques. The feasibility of applying odor detection using

metal oxide sensors for fire detection has been demonstrated by Okayama [6,7].

Successful development of a smart fire detector is based on the premise that

the response of each sensor contained in a detector can be related to the yield of

selected species from the source. The response of any one sensor, Si, is

proportional to the concentration of a gas specie or odor, Ci>transported to the

location of the sensor:

Si = Ci (1)

The concentration of the transported specie, Ci, is related to the yield, Yij mass

loss rate of the source, ni~,and mass flow rate, rnO,past the sensor:

lllf[)Ci=-Yi
In.

(2)

According to Tewarson [8], Ycoz and Yco are appreciably different for flaming /
and non-flaming combustion, e.g. Ycoz is on the order of 1.0 to 2.0 g/g for most

flaming fire sources and 0.05 to 0.2g/g for most non-flaming fire sources.

Consequently, a physical basis for a discriminating detector exists in the form of the

proportionality relations expressed as equations (1) and (2), where the sensor

response, Si, can be related to the type of the source.
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An experimental effort is being conducted at the University of Maryland to

determine if a sufficient distinction in signatures can be observed to support

development of a sma~ fire detector. The research is being conducted by teams

in the Departments of Fire protection Engineering and Chemical Engineering. The

fire protection engineering team is concentrating on identi@ing signatures from fire

and non-fire sources. The chemical engineering team is applying neural networks

toinvestigate the sensor response patterns and provide the discrimination capability

between fire and non-fire sources. The emphasis of this paper is to describe the

experimental effort led by the fire protection engineering team.

Small-scale Experimental Program

Initially, small-scale tests were conducted to characterize the signatures from

fire and non-fire sources [9]. The experiments were designed to be conceptually

similar to those by Okayama [6], with modifications incorporated to provide a

greater range of measurements for describing the signature.

The small-scale experimental apparatus was a simplified tunnel which included

measurement equipment and a means for generating odors. Measurements of light

obscuration, temperature, gas species concentrations (CO, COZ and Oz) and

presence of any oxidizable gas are provided. The presence of oxidizable gases was

measured by a Taguchi metal oxide sensor. Sources of the smoke or odor were

placed under a hood at the inlet end of the apparatus. A variety of fuels and

environmental sources selected to be representative of a residential environment.

Smoke and odors were produced from a wide rmge of conditions: samples with

flaming and pyrolyzing combustion, heated mmples and aerosols.

An elementary expert system successfully classified 28 of 31 sources. The rules

of the expert system are:

● COZ concentration exceeds 1500 ppm only for flaming fires

● Peak CO concentration exceeds 28 ppm and Taguchi detector response less

than 6V is acquired only for pyrolyzing solids.

● All other combinations are acquired from nuisance sources.

Am ellipsoidal neural network was applied to the small-scale data, using two-

thirds of the data for training and the remainder for testing [10]. An improved
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classification rate was obtained, accurately classi$ing all sources except one

smoldering source (which was classified as a flaming source).

The level of success attained from the small-scale experimental program

confirmed the feasibility of the concept presented by Okayama. However, the

success of the expert system and neural network only related to the limited range

of fuel sources investigated and the sma!l-scale test apparatus.

Large-scale Experimental Program

Recently, a large-scale experimental program was conducted to determine

whether the trends identified in the small-scale experimental effort were also

applicable in large-scale environments. The large-scale experiments were

conceptually similar to the small-scale experiments where signatures from a wide

variety of fires and environmental sources were monitored and sensor response

patterns were explored.

The large-scale experiments were conducted in a 3.6 x 3.6 m room with a height

of 2.4 m [11]. Measurements included temperature, mass loss of the fire sources,

CO, COZand Oz concentrations, light obscuration and the voltage output from two

metal oxide sensors (Taguchi model 822 and 880). In addition, two commercial

smoke detectors (one photoelectric and one ionization) were located on the ceiling,

at the center of the room. A diagram of the room, including the relative locations

of the sensors is provided as Figure 1. The metal oxide sensors responded to the

presence of oxidizable gases and environmental odors respectively. Mass lOSS

measurements were used to estimate the yield fractions of the signatures from the

fire sources. Because the tests were conducted in an unconditioned space, data was

collected for at least two minutes prior to introducing any source in order to

document ambient conditions.

The variety of sources used to generate conditions within the room are

summarized in Table 1. Again, the sources were intended to be representative of

residential fire and nuisance sources.

Flaming liquid tests were conducted by placing 50 ml of the sample in a pre-

cooled metal container ignited by a match. The container was cooled prior to the

tests to limit evaporation of the liquid prior to the initiation of flaming. Tests ~th
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Figure 1. Diagram of Test Room
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Table 1. Test Sources

Heated kuels
Liquid Solid Gas Environmental Sources

heptane, paper, cotton, propane propane, aerosols (disinfectant,
I-propanol, polystyrene, furniture polish, cooking spray,
methanol, pine, hair spray), nail polish remover,
toluene, cardboard, ammonia-based window cleaner,
vegetable oil* cheesecloth, bleach, water mis$ boiling water,

toast2 toast, cigarette smoke, coffee
1 Boiling only
2 Pyrolyzing only

flaming solids involved placing the fuel in an aluminum pan, then igniting the fuel

with a match. Tests with pyrolyzing solids were conducted by placing the fuel in an

aluminum pan on a preheated hotplate.

The group of tests involving the environmental sources were conducted by

several approaches, depending on the typical usage of the product in a residence.

One approach consisted of dispersing the product throughout the room, including

water mist, cigarette smoke and household aerosol products. Alternatively, solid

and liquid products such as bleach, nail polish remover (without acetone), boiling

liquids, coffee and toast were located at floor level in the center of the room. The

test with toast was conducted by placing the bread in a toaster that was kept IIon”

throughout the test. Tests with coffee included fresh coffee grounds as well as

brewed coffee.

Data from the sensors was reviewed for the purpose of identifying patterns

associated with the categories of sources. Concentrating on the maxima for each

sensor, an expert system was formulated similar to that developed for the small-

scale test data. As an initial step, this analysis was conducted manually. Work is

ongoing using a principal components analysis (PCA) to define an expert system

which is less complex and uses fewer sensors.

The elementary expert system developed for the large-scale tests is presented

in Figure 2. The success rates of the system are summarized in Table 2. All of the

flaming sources are properly classified, with smoldering sources classified properly

in 62% of the tests and nuisance and ambient sources classified properly in 87% of
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Figure 2 Expert System for Large-Scale Experiments
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the tests. As indicated in the table, the greatest challenge is in distinguishing

between smoldering and nuisance/ambient sources. In some tests, the distinction

was debated by the research team where the difference is vague, for example the

burned toast is labeled as a smoldering source.

Table 2. Classification of Test Sources

Classlflcdtlon Summary
Nuisance

Flaming Smoldering /Ambient Total % Correct

F ,:,‘ 34 :2: E

An improvement in the success rate for characterizing the nature of the source

can be achieved using a PCA. Preliminary results from the application of the PCA

for smoldering sources using data from all of the sensors provides a 88940correct

classification rate. In contrast, only 50% of the smoldering fires were detected by

commercial smoke detectors.

In addition to the improved classification rate, the time for detection of the

sensors with the PCA-based intelligence (the IIprototype detectorll) was significantly

less than that for the commercial detector. The time required for detection was

reduced an average of 109 S, with the detection time for the prototype detector

being 18 to 259 s less than that for the first responding commercial detector.

Summary

As a result of the experimental effor~ an early fire detector consisting of an

array of gas sensors appears fczdsib]e,with discrimination provided by a neural

network analysis of the sensor responses. However. many questions still remain

prior to the application of this technology as a means of early fire detection.

Additional research is required to optimize the number and types of sensors to be
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included in the array, while still providing the desired level of sensitivity and

discrimination ability. Continuing PCA applications on the large-scale data will

assist in the optimization process. In addition, the data acquired has been from

experiments conducted with one type of source, e.g. a flaming source without a

nuisance source being present. Additional experiments are needed to assess the

potential for a nuisance source to mask a flaming or smoldering source.
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